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The evaluation of some moments  of  the energy in the Hiickel theory of 
conjugated molecules is considered. It  is shown that, for molecules consist- 
ing entirely of  hexagons, the moments  #4 and #6 can be expressed in terms 
of four graphical invariants. Partial  results are given for other molecules. 
Since the total energy can be expressed as a series of moments the implications 
for the energy are discussed. In this discussion two other invariants play a 
major  role. The conclusion is suggested that an analysis of moments in terms 
of graphical invariants should be of prime importance in understanding these 
molecules. 
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1. Introduction 

In a recent paper in this journal [1] Jiang, Tang and Hoffman have discussed 
the moments of the orbital energies of acyclic chains, according to Hfickel theory, 
and given formulae for them in terms of the number of fragment patterns which 
can be found in the molecule. They also relate their results to the total pi electron 
energy. Since the total energy can be expressed exactly as an infinite series of  
moments  [2] good approximations can be obtained using a finite number of 
moments. 

In this paper  the evaluation of the first few moments  will be considered for 
molecules consisting entirely of hexagonal rings (polyhex) and, by way of contrast, 
for a few other categories. Only four graphical invariants are required to express 
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the first six moments  exactly. The accuracy of the approximation to the total 
energy that is obtained f rom these moments  is also examined. 

In Hiickel theory the interaction matrix A summarizes the relevant information 
about  molecular interactions. It is adjusted to have zero diagonal elements and 
unit off-diagonal elements between nearest neighbours. Since hexagonal-ringed 
molecules are alternant the carbon atoms can be numbered so that the first group 
(odd numbers) have no nearest neighbours among themselves and similarly the 
second group (even numbers).  The interactions are then entirely between the 
groups (odd-even).  I f  the groups are listed together (all the odds followed by 
all the evens) the matrix A becomes [2] 

a:(O 
where B now has all the non-zero interactions. The first moment  ~1 is the sum 
of  all the eigenvalues of  A and, by the trace theorem, is also the trace of  A so 
here P-1 = 0. It is easily seen that all the odd powers of  A will have the same form 
as A and so a zero trace. The sum of  the (2n + 1)th powers of  the eigenvalues is 

then 

~2~+1 = Tr (A 2n+1) = 0. (2) 

The traces of  even powers can all be expressed in terms of B: 

~2 = Tr (A 2) = 2 Tr (BrB)  = 2 Tr (BB r)  

~LL 4 = Tr (A 4) = 2 Tr (BTB)2... 
I f  n is the number  of  C atoms and N the number  of  CC bonds the first two 
moments  are simply: 

/~o = Tr ( I )  = n (3) 

/z2 = 2 (number of  unit elements in B) = 2N. (4) 

These results are well-known. In the next section the following moment/.~4 will 
be evaluated and ]~6 is found in Sect. 3. Some approximations for the total energy 
are described in Sect. 4 and the wider significance of the investigation is discussed 
in Sect. 5. 

2. The evaluation of ~4 

The matrix BTB is the second neighbour matrix and can easily be written down 
directly from the molecular graph [2]. Its diagonal elements are the degrees of  
the vertices, i.e. the number  of  C atoms bonded to the C in question. The 
off-diagonal elements are unity between second neighbours and zero otherwise. 
Since B involves only half  as many atoms as A the number  of  elements is one 
quarter. The two second-neighbour graphs for a radical are shown in Fig. 1. The 
trace of  the square of  a symmetrical matrix, S, is the sum of  the squares of  every 
element in the matrix: 

Tr (S 2) = E SjjSj, = E $2- (5) 
q u 



Evaluation of moments for polycyclic hydrocarbons 

Fig. 1. The two second neighbour graphs for BrB 
C13H9 
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a d  

Consequently the trace /z4 can be deduced from this matrix BTB by squaring 
each element and adding. (It is readily proved that BB T gives the same result.) 
To do this it is necessary to examine all the different possible matrix elements 
in BTB and find how many of each there are. The largest element is 3 and this 
occurs only as the degree of a C at a junction between rings. Elements of  2 and 
1 also occur. It is convenient, at this point, to take the hydrocarbon as a radical 
with u "unpaired electrons", i.e. an excess of  u odd atoms over even atoms. The 
matrix BTB then refers to the (n - u)/2 even atoms. Since its trace is the sum of  
the degrees of  the even vertices the number  of  vertices of  degree 3 is N -  (n - u). 
The remaining C atoms have degree 2 and these are the only elements with 2 in 
the matrix. The elements which are 1 are the edges of  the BTB graph, each 
counted twice, so the number  of  these is needed. The number  of  triangles in the 

�9 graph is one for each hexagon ring, i.e. r, and one for each vertex of  degree 3 
among the odd atoms, i.e. N - ( n + u ) .  Thus the number  of  triangles is r + N -  
(n + u). This r is determined by n and N through the Euler relation for the 
molecular graph: 

rings = edges - p o i n t s  + 1 (6) 

r = N - n + l .  (7) 

From the Euler relation (6) for this second-neighbour graph, which has (n - u)/2 
vertices and r +  N -  n - u rings, the number  of  its edges is 2 N - 3 ( n  + u)/2. The 
required trace is now 

/,~4 = 2 T r  (BTB) 2 = 2(4(n - u)/2 + 5 ( N  - n + u) + 2 (2N - 3(n + u) /2))  

= 1 8 N -  12n. (8) 

It is noteworthy that this is independent of  u so that the formula applies equally 
to all polyhex whether molecules or radicals. 

The result can be extended to arbitrary hydrocarbons. Two additional topological 
invariants are required to describe the relevant features of  the hydrocarbon. The 
first is e, the number  of "end"  C atoms with only one C neighbour. The second 
is s, the number  of  "squares" or four-membered rings. The diagonal elements of  
A 2 are the degrees of  the different C atoms. The number  with degree 1 is e, by 
definition, and the numbers with degrees 2 and 3 will be denoted by f and g, 
respectively. Since the total number  of  atoms is n 

e + f + g = n  



326 G.G. Hall 

and, since the N bonds have two ends, 

e+2f+3g=2N. 

These equations determine f and g as 

f =3n-2N-2e 

g=2N-2n+e. 

The off-diagonal elements of A 2 are the numbers of paths of length two connecting 
different atoms. With the exception of squares, there is at most one such path 
between any two atoms and its two edges will meet at a unique centre atom at 
an angle of less than 7r. Conversely, at each atom, for each subtended angle of 
less than ~r there will be a unique path of length two connecting its neighbours. 
Thus, the number of paths equals the sum of  the numbers of subtended angles 
at each atom. For an atom of degree 3 there are 3 angles, for one of  degree 2 
only 1 and none for those of  degree 1. Thus, allowing for the elements above 
and below the diagonal, the sum of  the off-diagonal elements is 2(3g + f ) .  Squares 
play an exceptional role because, for the atoms across a diagonal and for these 
alone, there are two independent paths, by the fight and by the left. For/.$4 each 
element of A 2 is squared and the results added. The diagonal elements contribute 
(e + 4 f +  9g). In the absence of squares the off-diagonal elements are 1 or 0 and 
their squares are the same so the total is 

/z4 = e + 4 f +  9g + 2(3g + f ) .  (9) 

Across each square are two diagonals each with two paths and so matrix elements 
of  2. When squared the latter give 22+22 instead of 1 + 1 + 1 + 1 as counted in (9) 
so the effect is to increase the moment to 

/~4 = e+4f+9g+2(3g+f+4s) = 1 8 N - 1 2 n + 4 e + 8 s .  (10) 

This expression for the moment holds for all hydrocarbons. Since both e and s 
are zero for polyhex it is a generalization of (8). 

3. The evaluation of P6 

The trace of the sixth power of A can be obtained from the third neighbour 
matrix BBTB by squaring every element and summing. This matrix has a form 
similar to that of B. The number of paths of length 3 between two atoms varies 
from 5 to 0 and these need to be considered separately. One new graphical 
invafiant is needed for this discussion of polyhex. This is the "bay",  which is a 
bond on the exterior of the molecule having C atoms of degree 3 at both ends. 
The smallest molecule with a bay is phenanthrene. The number of bays will be 
called b. 

The elements having 5, 4 or 3 in BBrB correspond to the bonds in B. An example 
is given in Fig. 2. Such paths consist of a single bond traversed in both directions 
followed by the connecting bond. Thus the number of paths is the sum of the 
degrees of the two atoms less one, since traversing the connecting bond three 
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Fig. 2. The nearest neighbour elements of BBTB, Each edge is 
the sum of the degrees of its vertices less l 
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times should be counted only once. From this it is easily seen that all the internal 
CC bonds have elements of  5. The number  of  "internal"  bonds, I, must be 
deduced. Each internal bond is shared between two rings so if I is added to N 
the shared bonds will be counted twice and each hexagon will have six edges, i.e. 

I+N=6r.  (11) 

Furthermore the bay is an exterior bond with an element of  5. These bonds having 
5 will be called "links", since they have rings at both ends, and their total number  
will be l where l = l + b = 6 r - N + b .  

An element of  3 occurs when both atoms of a CC bond have degree two. This 
may be called an exposed bond and can happen only at the "corners"  of  a 
molecule. It is readily verified that exposed bonds, for a hexagonal molecule 
without a bay, always number  six. Each bay introduces another one. The number  
having 3 is then 6 + b. 

Elements with 4 occur on the remaining bonds. Since the bonds total N the 
number  of  these elements is 

N - l - ( 6 + b )  = 6 r - 2 l - 6 .  

Elements with 2 occur only across hexagons since there are two paths of  length 
three across them. In BB-CB there are three such paths for every ring so the total 
is 3r. 

Elements with 1 occur in two ways, see Fig. 3. Each bay has one across the mouth 
of  the bay. The remainder are zig-zag paths which are best associated with their 
central bonds. It is quickly seen that each link, which had 5 in the previous 
discussion, has two of  these paths and each 4 bond has one. The remaining bonds 
have none. The total number  of  the 1 elements is b + 6 ( r - 1 ) .  

Fig. 3. The third neighbour zig-zag elements of BBTB listed accord- 
ing to their central bond. The bay element is dotted 
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The trace is now calculated by squaring each element and multiplying by the 
number  of similar elements. The result is 

/ z6 /2  = 251 q- 16(6 r -- 21 -- 6) + 9(6 + b) + 4(3 r) + b + 6(r - 1) 

= -71 + 114r + 10b - 48 = 58N - 48n + 6r + 3/. (12) 

Because of the Euler relation between N, n and r, (10) and (12) can be put into 
various forms. The preferred form has no constant term so that the moment  
becomes a homogeneous linear combination of independent invariants and is 
zero for n =0 .  The formula (12) is valid for all polyhex, radicals as well as 
molecules. 

The trace for the acyclic polyenes can be derived in a similar manner  but more 
invariants are required. The edges with vertices of degree 1 and 3, whose number  
will be E, have elements of  3, and so need to be distinguished from the (e -E)  
edges with 1 and 2 degree vertices which have 2. As well as the link, which has 
vertices of  degree 3 at both ends and contributes 5 to the matrix, f, the number  
of  "firths", i.e. bonds with vertices of  degrees 2 and 3 and contributing 4, is 

" needed. This can be deduced from the total number  of  degree 3 vertices which 
is ( e - 2 )  for an acyclic molecule and also (E +f+21)/3 so that 

f = 3 e - 6 - E - 2 1 .  (13) 

As before, the zig-zags are associated with their central bonds and there are 
( N -  e + l) of  them. Each bay now has two other paths across its mouth and each 
firth has one. The trace is found by squaring and adding the elements as before: 

tz6/2=251+16f +9(N-(e+ f + l)+ E ) + 4 ( e - E ) + ( N - e +  l)+(f + 21) 

= 58N - 4 8 n  +31+  1Be - 3 E .  (14) 

Since, by using 1 as the new variable rather than b, this formula conforms to 
(12), for the hexagonal molecules, it can be simply generalized to 

~ 6 / 2  --  5 8 N -  48n + 6r + 31+ 18e - 3 E. (15) 

This form now includes molecules which contain both hexagons and polyene 
side chains such as the polyphenyls. The generalization to four-membered rings 
does not conform so that they are excluded. 

4. Approximations to the total energy 

The total pi energy of a molecule is determined by its moments. It was proved 
earlier [2] that the energy could be expressed as a convergent infinite series of  
traces. Since the existence of such an expansion has been denied ([3], p. 53) it 
is worth emphasizing that the expansion will always converge. It could diverge 
for a radical because of the zero eigenvalue but this can be avoided by removing 
these eigenvalues. In the notation used above, B-rB has (n-u)~2 dimensions 
and BB T has (n + u)/2 dimensions with u zero eigenvalues. By using BTB the 
exclusion of the zeros is automatically achieved for all benzenoid molecules. The 
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matrix function (BTB)1/2 then has as eigenvalues all the non-zero occupied orbital 
energies so that, with double occupation, 

E= = 2 Tr (BTB) 1/2. 

A symmetrical matrix C is first defined by 

Brn = 9 / 2 ( 1 -  C), C = I - 2 / 9  BTB (16) 

so that C has eigenvalues strictly between - 1  and 1. The total energy is, then, 
E= where 

E==2Tr(3/~/2(I-C)l /2)=3~/2Tr(I-1/2C-1/SC2-1/16C3..  .). (17) 

The convergence of the binomial series inside the interval - 1  to 1 is well-known 
so the  convergence of the matrix series (15) is assured. The traces of  powers of  
C are readily expressed in terms of  the traces of  powers of  B. Although this 
series does converge it does so rather slowly so that other solutions are desirable. 
The partial sums of  this series give a set of  approximations to E~ which will now 
be evaluated for polyhex. The first term alone is E1 = 3/ , /2 ( n -  u). The first two 
terms give 

E2 = 3~/2/4(n - u) + ~/2/3 N. (18) 

Since Tr (C 2) = 11/54 n -  1/2 u +8 /81e  the first three terms give 

E3 = 97~/2/144n - 9~/2/16 u + , /2 /3  N - , / 2 / 2 7  e 

= 0.95263 n - 0.79550u + 0.47140N - 0.05238 e. (19) 

The trace of  C 3 is 

67/486n - 1/2u + 22/729 N -  16/243 r - 8/2431 - 16/81e + 8/243 E. 

The next approximation becomes 

E4 = 6917,/2/10368n - 15~/2/32u + 637~/2/1944N + ~/2/81 r 

+ ~ /2 /162/ -  ~/2/162E + 0 e  

=0.91607n-O.66291u+O.46340N+O.O1746r+O.OO8731-O.OO873E. (20) 

These approximations are the beginning of  the convergent expansion but its 
convergence is fairly slow. The first term alone is a very bad approximation and 
the second is only a little better. E3 begins to represent the shape of the energy 
more realistically and/54 is an improvement  at the expense of  using three extra 
variables. 

Another approach to the problem considers the approximation to Ixl which can 
be obtained using polynomials in x 2. A least squares fit of  Legendre polynomials 
in the variable x over 0 < x < 1 gives 

x = 1/2 + 5/8P2(x) - 3 /16P,(x)  + 13/128P6(x). (21) 

The largest difference between the two sides of  this equation when only four 
terms are included is at x = 0 where it is 0.0854. I f  x is replaced by the matrix 
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A/3  then this polynomial gives an expression for E~ in terms of the traces up 
to the sixth power. The maximum error of each eigenvalue of A is 0.0854 so the 
error in E~, is bounded by +0.0854n. The resulting expansion for E~ is 

E~ = 0.93032n - 0.25634u + 0.35817N+ 0.07242r + 0.036211 

-0.03621E - 0.02632e. (22) 

Although this does not agree well with (20) it has the same qualitative features. 

A brief consideration of the higher moments shows that an increasing number 
of  graphical invariants are needed to express them exactly but that those already 
introduced give the major contributions. This suggests an alternative approach 
to the problem of representing the energy. This is to fit an energy expression 
consisting of a linear combination of a limited number of invariants to the 
calculated energies of a large number of  molecules. A least squares fitting of this 
kind was performed earlier [4] and gave, for the polyhex, using only n and N 

E~ = 0.909 n + 0.419N. (23) 

For the polyenes the three variables n, N, e are needed and an approximate fit 
gave [5] 

E~ = n + N / 4 -  e/8. (24) 

For radicals u is also needed and the result was [5] 

E~ = 0.9n + 0.43 N - 0.17e - 0.44u. (25) 

These show rough agreement with the expansions above. 

In these formulae the energy is expressed as a linear combination of invariants. 
This is suggested, but not proved, by the fact that the lower moments can be so 
expressed. Other types of formula have been used with some success. McClelland 
[6] has used the form 

E~ = 0.92~/(2nN) (26) 

and others have elaborated this. For references see Chap. 3 in Graovac et al. [3]. 
To express the linear dependence of  the energy of  isomers on the (algebraic) 
number of resonance structures K [4], the formula 

E~ = 0.442n + 0.788N + 0.34K (0.632) N-n (27) 

was found (7] by fitting a large number of  polyhex molecules. A similar formula 
has been given recently by Gutman [8]. 

5. Discussion 

The fact that the energy is largely determined by the two quantities n and N is 
important for these molecules. The quantity N can be replaced by h, the number 
of  H atoms, using 

h = 3 n - 2N, (28) 
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so that, for example, (23) becomes 

E~ = 1.5375n -- 0.210h. (29) 

This relates the energy directly to the formula C,,Hh and helps to explain the 
two-dimensional vector addition relation of molecular energies pointed out by 
Dias [9] and expressible as 

E( C,+mHh+j) = E( C, Hh) + E( C,,,I-tj). (30) 

This paper  shows that the study of the moments is a more controlled means of 
identifying and classifying the graphical invariants than a direct attack on the 
energy. The moment  #2r counts the number  of  closed paths of  length 2r on the 
graph and, as has been shown, this reduces to the sum of the squares of  the 
number  of  open paths of  length r. A graphical feature which influences this 
cannot involve more than r bonds. Thus for the moments  up to/z4,  only n and 
N are essential with e and s in appropriate situations. The extra step, to /x6, 
brings in r, E and l, whose definitions involve three bonds, but these describe 
only polyhex and polyenes. Preliminary evidence suggests that, even for polyhex, 
/~8 requires three more invariants. In general the polyhex require fewer invariants 
than other molecules because of the tighter constraints on their structure starting 
with the fact that their C atoms cannot have degree one. The invariant u is of  
special interest. It is not required for any of the lower moments.  It arises naturally 
when the energy is discussed in terms of B rather than A so that (3) is not used. 
Since there are ( n -  u)/2 linearly independent moments it measures a property 
of  the set of  moments as a whole and does not arise as a fragment pattern. 
Similarly, K is not required for the moments  but, since K = IBI for a polyhex 
molecule, it is another useful graphical invariant for the whole molecule. 

There is a connection between the study of  the coefficients ar of  the characteristic 
polynomial  and of the moments. These coefficients are defined by the identity 

ar xn-r= Ixl-'Af (31) 
r 

and can all be expressed in terms of moments.  Thus the a 4 coefficient, which is 
the sum of the eigenvalues of  A taken four at a time and all different, is given, 
for an alternant, by 

a4 = 1/8(/~2) 2 -- 1/4/~4. (32) 

This gives for a4 using (4) and (10) the same expression as that obtained by Dias 
[10]. Similarly a 6 is given by 

a6 = -1/48(/x2)3 + 1/8t.s 1/6/x6 (33) 

and this also agrees with that of  Dias. In general the linear term in ar is a multiple 
of  ]-s so that the same graphical invariants are involved but since powers of  other 
moments  are also included it is less convenient to study the ar than the separate 
moments.  

When the molecule becomes large or even infinite its eigenvalues tend to form 
bands and new techniques are needed to discuss its electronic structure. It has 
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been  shown by Burdett  et al. [ I1]  that  the energy momen t s  remain  impor tan t  
and,  us ing a con t inued  fract ion technique ,  can give the densi ty of states and  
other  useful  properties.  

It has been  convenien t  to base this discussion on Hiickel theory bu t  the analysis  

of  the structure of  a molecule  in graph theoretical  terms is of  pr ime impor tance  

in  any theory of these molecules  so that  its significance is much  wider. 
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